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Abstract 

The dynamics of the differential rotating sphere is worked out. In view of the results, a 
theory for producing the pulse of pulsars is proposed. 

1. Introduction 

The pulsars are believed to be rapidly rotating neutron stars as proposed 
by Thomas Gold and Jeremiah Ostriker. But the origin of  the pulses o f  the 
pulsars are not  satisfactorily explained. An explanation is proposed in Section 5. 

Although the pulses of  the pulsars are radio emission, the support for the 
radio emission is the matter.  If  the density on some port ion of  the surface 
of  the pulsars is higher than the rest, and the mat ter  is subjected to a sudden 
increase in velocity there, then the radio emission there is stronger than the 
rest of  the surface. Hence the pulse is due to the density bands on the surface 
of the pulsars as concluded from the mathematical  solution in the following 
sections. 

2. Physical Model  

We consider a spherically symmetrical distribution of  matter  rotating 
counterclockwise around the north pole. The matter  is moving up and down 
radially because of  its temperature distribution. 

(H, O, ¢~) denotes the velocity in spherical coordinate (r, 0, 4)) rotating 
around the z axis at an angular velocity ~bo, where ¢~0 is the angular velocity 
of  the surface of  the sphere as shown in Figure 1. We have 

114=0 
and (2.1) 

O ~ 0  

since • is chosen to be in the direction of  rotat ion.  
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Figure 1. 

We assume that the spherical symmetry is not destroyed drastically in 
the course of time, i.e., the physical model is still more or less spherical in 
shape. We are interested in the density variation on the outer fringe of this 
rotating sphere. Hence the potential B on the outer fringe can be approxi- 
mated by 

B ~ -GM/r (2.2) 

where M ~ the total mass. 

3. Mathematical Solution 

~(r, 0, 0, 11, O, d), t) denotes the distribution function of the physical 
model in Section 2. The Liouville equation in spherical coordinate can be 
obtained from Chandrasekhar's equation (3.26) (Chandrasekhar, 1960): 

• a~ (o~+® ~ a~)a~ ag+_® a¢ + + 
~ + H  Or r a--O rsinOOO r OH 

( - ~ O  cos0 q~2 l a b  t 0 f f  
+ . - - * r s m 0  -7gj~ 

(-Ile cos0 1 aB ta~ 
+ r rs in~ 0 ~ -  r s i n 0 ~ - ) ~ - ~ = 0  

Applying (2.1) and (2.2) to (3.1), we have 

aq; q~ aq; ( ~  a_r,'r,')aq; II~a4; - - + I l a ~ +  + - =0  
at Or rsinO a¢ 0II r aq~ 

The density of the sphere is given by 
o o  

o(r, O, 0, t) = f f ~ dII dgp 

The characteristic equation for (3.2) is 

dt dr dO dO dIl d4~ 

1 I1 0 ~/rsinO dO2/r- 3B/ar -ilcb/r 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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From the third equation in (3.4), we have 

0 = const (3.5) 

From the last two equations in (3.4) and the time independent of  B, the 
energy integral is obtained: 

1(112 + fix ~ 2 )  - -  aM/r = E (3.6) 

where E is a constant. 
From the second and the last equations in (3.4), we obtain the momentum 

integral: 

r~ = :  (3.7) 

where J is a positive constant. 
From the fourth and the last equations in (3.4), we have 

sin 0 d4=  dg~ 

1 - I I  

Solving II from (3.6) and substituting into the above equation and integrating, 
we obtain 

lq sin (~b sin 0) + • cos (~b sin 0) -- (GM/J) cos 0 = [2E + (GM/J) 2] 1/2 sin C1 
(3.8) 

Dividing by • and using (3.7), we obtain 

FI/q~ = cot (4 sin 0) + (2E/J) ~(r, 4, O) (3.9) 

where 

GM [2E + (GM/J) 21 1/2 
~(r, 4, O) = - ~  r cot (4 sin 4) + 2E r sin C1 cosec (4 sin 0) 

(3. t0)  

where C1 is a constant. 
From the first and the second equations in (3.4), we have 

dt dr 

1 H 

Applying (3.6) and (3.7) and integrating, we obtain 

- J  II 
t = - -  - + X(r) + C2 

2 E d )  

where 

X(r)= - G M  In 1 2(2E)VZ(2Er 2 + 2GMr-  j 2 )v2  + 4Er + 2GMI 
(2E) :~'2 

(3.11) 

(3.12) 
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Subst i tu t ing  (3.9)  in to  (3.11),  we obta in  

t = ( - J / 2 E )  co t (4 ) s inO)-~(r ,  cb, O)+ X(r)+C2 (3 .13)  

There the general so lu t ion  for (3.2)  is 

= ff[(II  2 + q52)/2 - GM/r, r~, I1 sin (4) sin 0) + • cos (4) sin 0) 

-(GM/J)  cos (4) sin O), t + (J/2E) cot (4) sin O) + ~(r, 4), O ) -  X(r)] (3 .14)  

The densi ty  is 

o(r, O, 4), t) = A(r, O, (p) cos [t + (J/2E) cot  (4~ sin 0) + ~(r, 4), 0) - X(r)] 
(3.15) 

where the ampl i tude  A(r, O, ~) can be ob ta ined  f rom (3.14).  

4. Physical lnterpretation 

We set 

X = t + (J/2E) co t  (4) sin 0) + ~(r, 0, 4)) - X(r) (4.1)  

F o r  pract ical  values o f  r, J ,  E and M, we have 

X ~ t + (J/2E) cot  (4) sin 0) (4.2)  

F r o m  (3.15),  we know the mo t ion  o f  the densi ty  wave is de te rmined  by  
cos X. The peaks  o f  the dens i ty  waves occur  at 

J 
t + - -  co t  (4) sin 0)  = nrr (4.3)  

2E 

The phase ve loc i ty  in the  4) d i rec t ion  is 

d4~ 2E sin2(4) sin 0) 
(4.4)  

dt J sin 0 

We see tha t  ?( = ~ or _~o and dO/dt = 0 when 4~ = 0 or 4~ sin 0 = rr. Let  us 
denote  the curves 4) = 0 and 4) sin 0 = 7r by B t and B2, respectively.  Because 
o f  the fac tor  sin 0, the middle  po in t  o f  B2 starts f rom 0 = rr, 0 = 7r/2 and 
runs up  and down in the q5 d i rec t ion  and meets  B I at 0 = 30 ° or 150 ° as 
shown in Figure 2. Since X tends to  + ~ as 4) tends  t o B  1 orB2,  there  will 

Figure 2. 
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be many density-wave peaks crowding around B 1 or B2, respectively. The 
spacing between the peaks is smaller as 4~ tends to Bt or B2. The phase 
velocity in the ~ direction is faster as ~ is farther away from B 1 or B 2. 

Therefore the density waves will pile up on one side and split up on the 
other side of B1 and B2. Sharp density shocks, B 1 and B2, will be produced. 

5. Pulsar 

Since it is believed that the interior of the pulsars is viscousless, the rapidly 
rotating neutron star model for pulsars fits very well with the physical model 
described in Section 2. The mathematical results and the physical interpreta- 
tion in Sections 3 and 4 indicate that density waves will be formed auto- 
matically. The density waves will pile up along two bands, B~ and B2. 
Furthermore, the particles are subjected to sudden acceleration and decelera- 
tion around the bands. The neutron star radiates radio waves in all directions, 
but the radio waves are stronger on the sharp density bands B 1 and B2. 
Hence we receive pulses from the rapidly rotating neutron stars. Since the 
second band B2 is weaker than the first band B 1, the pulse from the band 
B~ is weaker than that from the first band B1. This explains one stronger 
pulse and one weaker and off center pulse of the pulsars. 
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